lib senn 16157696

Sardar Patel College of Engineering

(A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai – 400058. End Semester Exam May 2016

Max. Marks: 100	
Class: B.Tech.	Semester: VIII
Name of the Course: Earthq	uake Engineering

Duration: 3 Hours Program: Civil Engineering Course Code : CE457

Master file.

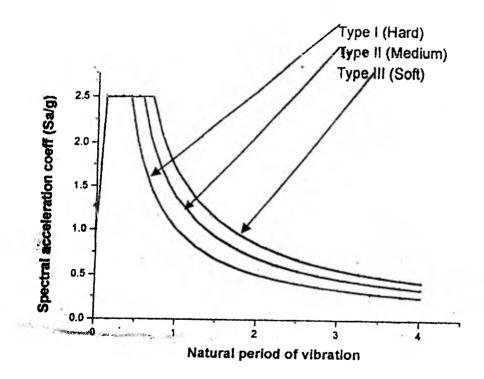
Instructions:

- Attempt any FIVE questions out of SEVEN questions.
- Answers to all sub questions should be grouped together.
- Figures to the right indicate full marks.
- Assume suitable data if necessary and state the same clearly.

	Max. Marks	Course Outcome No.	Module No.
Answer the followings: (i) What is Random dynamic Load? Briefly explain how the	3	1	1
(ii) What is an earthquake? How the earthquakes are classified	3	1	4
 (i) What is Random dynamic Load? Briefly explain how the analysis of structure to random of dynamic Load is done. (ii) What is an earthquake? How the earthquakes are classified based on their causes? (iii) Explain the different types of seismic waves and their characteristics (i) A single storey structure with rigid slab is supported on four corner columns as shown in figure. The height of structure is 6.0 m. In general what will be the degrees of freedom for this structure? And specify these dof. Calculate the natura frequency of the structure for excitation in X and direction separately. (ii) If the system is subjected to harmonic ground motion of amplitude 0.2g at frequency of 10 rad/sec in X direction only, calculate the maximum lateral displacement of slab is in the structure of the structure of slab is subjected to slab is subjected to slab is for the slab is subjected to slab is slab is slab. 	4	1	4
 (i) A single storey structure with rigid slab is supported on four corner columns as shown in figure. The height of structure is 6.0 m. In general what will be the degrees of freedom for this structure? And specify these dof. Calculate the natural frequency of the structure for excitation in X and Y direction separately. 	4	1	2
amplitude 0.2g at frequency of 10 rad/sec in X direction only, calculate the maximum lateral displacement of slab in Y direction and maximum stress in each column $\zeta = 5\%$ and	3	1	2
T PZZZ	X		
- Clina	Rig 50 mm	id Slab	
	 (i) What is Random dynamic Load? Briefly explain how the analysis of structure to random of dynamic Load is done. (ii) What is an earthquake? How the earthquakes are classified based on their causes? (iii) Explain the different types of seismic waves and their characteristics (i) A single storey structure with rigid slab is supported on four corner columns as shown in figure. The height of structure is 6.0 m. In general what will be the degrees of freedom for this structure? And specify these dof. Calculate the natural frequency of the structure for excitation in X and Y direction separately. (ii) If the system is subjected to harmonic ground motion of amplitude 0.2g at frequency of 10 rad/sec in X direction only, calculate the maximum lateral displacement of slab in Y direction and maximum stress in each column ζ = 5% and E = 20,000 MPa. 	MarksAnswer the followings:(i) What is Random dynamic Load? Briefly explain how the analysis of structure to random of dynamic Load is done.(ii) What is an earthquake? How the earthquakes are classified based on their causes?(iii) Explain the different types of seismic waves and their characteristics(i) A single storey structure with rigid slab is supported on four corner columns as shown in figure. The height of structure is 6.0 m. In general what will be the degrees of freedom for this structure? And specify these dof. Calculate the natural frequency of the structure for excitation in X and Y direction separately.(ii) If the system is subjected to harmonic ground motion of amplitude 0.2g at frequency of 10 rad/sec in X direction only, calculate the maximum lateral displacement of slab in Y direction and maximum stress in each column $\zeta = 5\%$ and $E = 20,000$ MPa. \mathcal{M} <t< td=""><td>MarksOutcome No.Answer the followings: (i) What is Random dynamic Load? Briefly explain how the analysis of structure to random of dynamic Load is done. (ii) What is an earthquake? How the earthquakes are classified based on their causes?31(ii) Explain the different types of seismic waves and their characteristics41(i) A single storey structure with rigid slab is supported on four corner columns as shown in figure. The height of structure is 6.0 m. In general what will be the degrees of freedom for this structure? And specify these dof. Calculate the natural frequency of the structure for excitation in X and Y direction separately.41(ii) If the system is subjected to harmonic ground motion of amplitude 0.2g at frequency of 10 rad/sec in X direction only, calculate the maximum lateral displacement of slab in Y direction and maximum stress in each column $\zeta = 5\%$ and $E = 20,000$ MPa.41K<</br></br></br></td></t<>	MarksOutcome No.Answer the followings: (i) What is Random dynamic Load? Briefly explain how the analysis of structure to random of dynamic Load is done. (ii) What is an earthquake? How the earthquakes are classified based on their causes?31(ii) Explain the different types of seismic waves and their characteristics41(i) A single storey structure with rigid slab is supported on four corner columns as shown in figure. The height of structure is 6.0 m. In general what will be the degrees of freedom for this structure? And specify these dof. Calculate the natural frequency of the structure for excitation in X and Y direction separately.41(ii) If the system is subjected to harmonic ground motion of amplitude 0.2g at frequency of 10 rad/sec in X direction

<u></u>				. 4
			•	
Q1 (c).	Explain the characteristics of ground motions	3	2	4
Q2 (a)	The mass m, stiffness k, and natural frequency ω of an undamped system are unknown. These properties are to be determined by harmonic excitation tests. At an excitation frequency of 4 Hz, the repose tends to increase without bound (i.e., a resonant condition). Next, a weight $\Delta w = 50$ N is attached to the mass m and the resonance test is repeated. This time resonance occurs at $f = 3$ Hz. Determine the mass and the stiffness of the system.	4	1	2
	 (i) A single story frame with rigid girder as shown in figure below is to be designed for ground motion, the response spectrum of which is shown in figure1. Determine the design value of lateral deformation and bending moments in the columns 	4	2	6
	 (ii) If the columns of the frame are hinged at base, determine the design values of lateral deformation and bending moments in columns. Comment on the influence of base fixity on the design deformation and 	4	2	6
Q2 (b)	bending moments $4m$ $4m$ $ET = 10,000 \text{ KN} - m^2$			
Q2 (c)	A two storey frame with free vibration characteristics as given below is subjected to a harmonic force with amplitude 100 KN and at frequency of 20 rad/sec. at the 2^{nd} floor level. Calculate maximum displacements of each storey. Take damping ratio =5%	8	1	3
	FloorMassMode ω ,ModeShapesNo.(t)No.rad/sec Φ_{i1} Φ_{i2}			
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
			1	

.

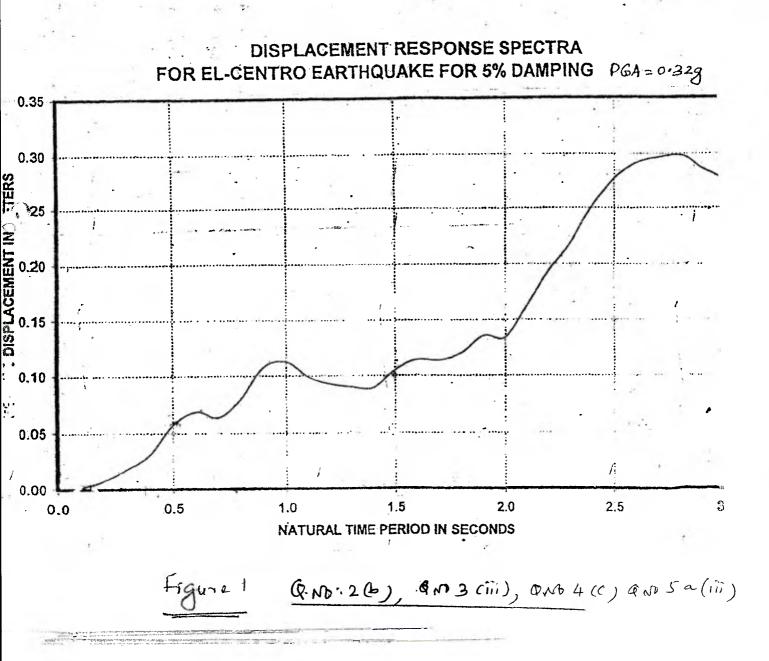

• •									
	structure supported weight is The plan is 8 m (i) Deriv	ve the stift	f a roof ic rner colum distributed are b= 30 1 0,000 Mp ness matr	dealized as ns as shown and has m m d=20m a ix and det	a rigid d in figure. agnitude 2 Height of termine th	iaphragm, The roof 00 kg/m ² . Columos		1, 2	6
	frequenci	es and mod	es shapes o	f vibrations	of the stru	cture			
	(ii) If the	structure is	subjected t	o ground m	otion \ddot{u}_{gx} of	nly in x			
	direction.	write down	the equation	ons of motic	on for the s	ystem			
Q3	mm x 60 motion or shown in	special case 0 mm, and nly in X din n figure1. ion, base she 7750 + 750	if the sys rection, the Determine car and ben	tem is subj response sp the desig	ected to th pectrum of n value of	ne ground f which is of lateral			
Q4 (a)	What is spectrum	response s characteristi	pectrum?	Explain bri	efly, the	response	5	2	5
Q4 (b)	Explain t	he procedu ted peak gro	re to const	ruct elastic n parameter	response s	spectrum	6	2	5
	characteris motion ch 1 but scale	story fram stics. The f aracterized ed to peak g ues of latera	rame is to by the design ground acco) be design gn spectrum eleration of	ed for the given in t	e ground he figure	9	2	6
	design val						}		
Q4 (c)	design val	Mass (t)	Mode	ω,	Mode	e shapes			
Q4 (c)	design val	Mass (t)	Mode No.	ω, rad/sec					
Q4 (c)	design val	Mass (t)	1	-	Μode Φ _{i1} 1.0	e shapes Φ_{i2} 1.481			

			•	
Q5(a)	The plan of one storey building is as shown in figure. The structure consists of a roof idealized as a rigid diaphragm, supported on three frames A, B, and C as shown. The roof weight is uniformly distributed and has magnitude 200 Kg/m ² . The lateral stiffness are $K_y = 20000$ KN/m for frame A and $K_x = 25000$ KN/m for frames B and C. The plan dimensions are b= 30 m d=20m. The height of building is 10m. (i) Derive the stiffness matrix and determine the natural frequencies and modes of vibrations of the structure (ii) If the structure is subjected to ground motion \vec{u}_{gx} only in X direction, write down the equations of motion for the system (iii) If the system is subjected to the ground motion only in X direction, the response spectrum of which is shown in figure1. Determine the design value of lateral deformation, base shear and bending moment for the system	8 Jod Sla	1, 2	2,6
Q5(b)	Explain how the magnitude and intensity of an earthquake are measured.	4	2	4
Q5(c)	State the limitation of Seismic Coefficient Method. As per IS 1893-2002, under what conditions the seismic coefficient method is permitted to use to calculate the earthquake forces.	3	3	7
Q5(d)	Briefly explain the Plate Tectonic Theory of an earthquake occurrence	5	2	4
Q6(a)	What is soft story? Explain the provisions of IS 1893-2002 for the design of RCC elements of soft story	3	3	7
Q6(b)	Explain the three requirements of displacement design of structure for earthquake load as per IS 1893-2002.	4	3	7
Q6(c)	As per IS 1893-2002, how many mode need to be considered in the earthquake force calculation by Response Spectrum Method	2	3	7
Q6(d)	Using response spectrum method, calculate the seismic force on each floor of the frame whose pre vibration properties are given below. Use the following additional data: Z=0.24, I =1.5, R=3.0 and $\xi = 5\%$. Assume foundation strata	11	3	7

4

.

	Story No.	Mass No.	Mass (t)	ω rad/sec	Mode s	hapes				
			1		Φ_{i1}	Φ_{i2}	Φ_{i3}			
	1	1	20	15.73	0.399	0.747	1.0			
	2	2	20	49.85	1.0	0.727	-0.471			
	3	3	20	77.82	-0.908	1.0	-0.192			
Q7(a)	What is s	hear Wal	l? Expla	in the adva	antages of	f shear w	alls.	3	3	7
Q7(b)	What is ductility of a structure? Explain the importance of ductility in seismic resistant structures.					rtance of	3	3	7	
Q7(c)	(i)Beams web reinf	Explain the provisions of IS 13920 for (i)Beams: General provisions, longitudinal reinforcement and web reinforcement (ii) Shear Walls: General requirements and shear strength						12	3	7
Q7(d)	Briefly ex 2002 (i.e.			ake desig	n principl	e as per	IS 1893-	2	3	7



Response Spectrum as per IS 1893-2002 for 5 % Damping

QNO.6d Figure 2

5

ŧ

7.

library

Sardar Patel College of Engineering

(A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai – 400058. End Semester Exam May 2016 Q. P. Code:

Max. Marks: 100Duration: 3 HrsClass:.B.TechSemester: VIIIName of the Course:Appraisal & ImplementationCourse Code : CE464Master file.

Instructions:

1. Attempt any five out of Seven questions.

2. Make suitable assumptions where necessary and state them clearly.

Question	2. Make suitable assumptions where accounty a	Maximum	CO	Module
No		Marks	Number	No.
Q1	A) With the help of various characteristics discuss how construction projects to be unique?	10	1	1
	B) Elaborate SWOT analysis in project appraisal.	10		
	A) Briefly explain the Project Development Cycle in detail?	08	1	
Q2	B) What do you mean by Project Appraisal? Explain necessity of project appraisal?	06	1	2
	C) What are the key issues should be addressed while appraising projects?	06	1	
	A) Explain any two analytical & economical appraisal techniques for project appraisal?	08	1	
Q3	B) An initial investment in plant & machinery of ₹ 22000 is expected to generate cash flows of ₹ 2342, ₹ 2200, ₹ 3850, ₹ 5230 at the end of first, second, third & fourth year respectively. At the end of fourth year machines will be sold for ₹ 650 as salvage value. Calculate the net present value of the investment if the discount rate is 10.5%.	06	I	2&5
42	 C) A company manufacturers a product that sells for 14 rupees per unit. Variable cost per unit is 10 rupees & fixed cost per period is 1400 rupees. Capacity per period is 11 units. 1) Graph the revenue & cost functions 2) Find the numbers of units sold & the revenue amount in rupees at breakeven point 	06	1	
Q4	A) Discuss forecasting of demand for market appraisal	10	1	3
×'	B) Describe in detail Technical Appraisal.	10	1	

	A) What is project risk analysis & management process in project appraisal?	06	2	
Q.5.	B) Explain project cost management process in project appraisal?	08	2	5
-	C) Write a short note on- Social cost benefit analysis.	06	2	
	A) Explain factors affecting to project implementation plan? (Any 12)	06	3	
Q.6.	 B) Discuss following project implementation techniques in detail (Background-Advantages-Disadvantages- Example) 1) BOT 2) BOOT 	08	3	6
	C) What do you mean by project implementation plan? Explain GANTT chart?	06	3	
Q.7	 A) Enlist the different financial institutions & discuss their role. 	10	3	7
	B) Discuss in detail different sources of finance.	10	3	

Bharatiya Vidya Bhavan's Sardar Patel College of Engineering

(A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai – 400058. END SEMESTER EXAMINATION

May 2016

Max. Marks: 100 Class: Final Year B. Tech

Semester: VIII

Lib Seetin 1 Strkol6

Duration: 3 Hrs Program: Civil Engineering

Name of the Course: Construction Management Instructions:

- 1) Attempt any five questions.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figure to the right side indicate full marks.
- 4) Use of Scientific calculator is allowed.
- 5) Assume suitable data if necessary and state it clearly.

Q.No			Marks	Course Outcome Number	Module No.
1	a	Discuss the role of different agencies in project management.	5	CO1	1
	b	Distinguish between Arbitration and Litigation.	5	CO3	7
	c	Explain the importance of ABC analysis in materials management?	10	C01	5
2	a	Explain clearly the following statement "CPM is deterministic and activity oriented network while PERT is a probabilistic and event oriented network	8	CO1	3
	b	(a) Discuss the various hazards associated with construction industry.	6	CO2	6
,	C	What are the factors considered in equipment planning?	6	CO1	5
3	a	Explain the salient features of Workman's compensation act 1923.	8	CO1	7
	b	Explain in detail time cost trade off for time optimization.	8	CO1	5
	C	Discuss in brief LOB technique	4	CO1	4

Master file.

Course Code: CE453

Q.No			Marks	Course Outcome Number	Module No
4	a	Discuss the process for pretender and pre construction planning of High Rise Building.	6	CO1	2
	b	A Civil engineering firm has to bid for the construction of a dam. The activities and their time estimates are given below:	14	C01	3

Activity	to	t _m	tp
1-2	14	17	25
2-3	14	18	21
2-4	13	15	18
2-8	16	19	28
3-4(dummy)	0	0	0
3-5	15	18	27
4-6	13	17	21
5-7(dummy)	0	0	0
5-9	14	18	20
6-7(dummy)	0	0	0
6-8(dummy)	0	0	0
7-9	16	20	41
8-9	14	16	22

		The policy of the firm with respect to submitting bids is to the minimum amount that will provide a 95% of probability of at best breaking-even. The fixed costs for the project are 8 lakhs and the variable costs are 9000/- per day spent working on the project. The duration is in days and costs are in rupees. What amount should the firm bid under this policy? At 95% probability value normal variate is 1.65. Perform the calculations on the duration etc, upto two decimal places.			
5	a	Discuss the concept of 'quality' for construction industry. How do you ensure construction quality during life cycle of a construction project?	8	CO2	6
	b	What are the different functions of materials management?	7	CO1	5
	с	Highlight the significance of cash flow diagrams in construction project.	5	C01	5

Q.No			Marks	Course Outcome Number	Module No
6	a	Differentiate AOA and AON Network.	6	CO1	3
	b	The utility data for a network are given below. Determine the total float, free float, Independent float and interfering float and identify the critical path	14	CO1	3

.

.

¢

Activity	0-1	1-2	1-3	2-4	2-5	3-4	3-6	4-7	5-7	6-7
Duration	2	8	10	6	3	3	7	5	2	8

7	a	You are appointed as a project manager for a metro project. Suggest suitable structure of construction organisation.	6	CO1	2
	b	Discuss time and cost overrun of a construction project. Explain the important causes and adverse effects of the same.	10	CO1	6
	c	Discuss resources leveling and smoothening	4	CO1	4

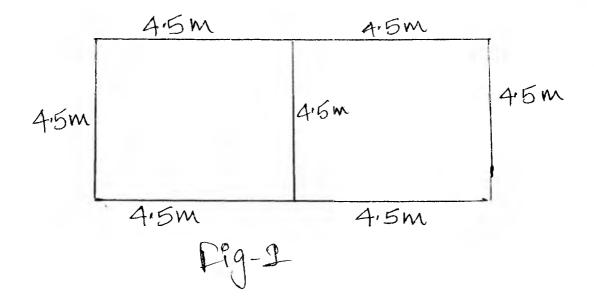
Sardar Patel College of Engineering

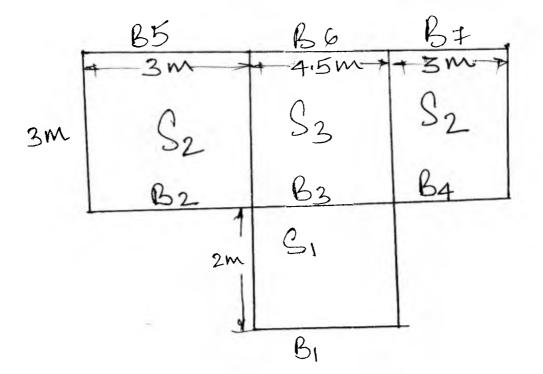
(A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai – 400058. Re-Exam

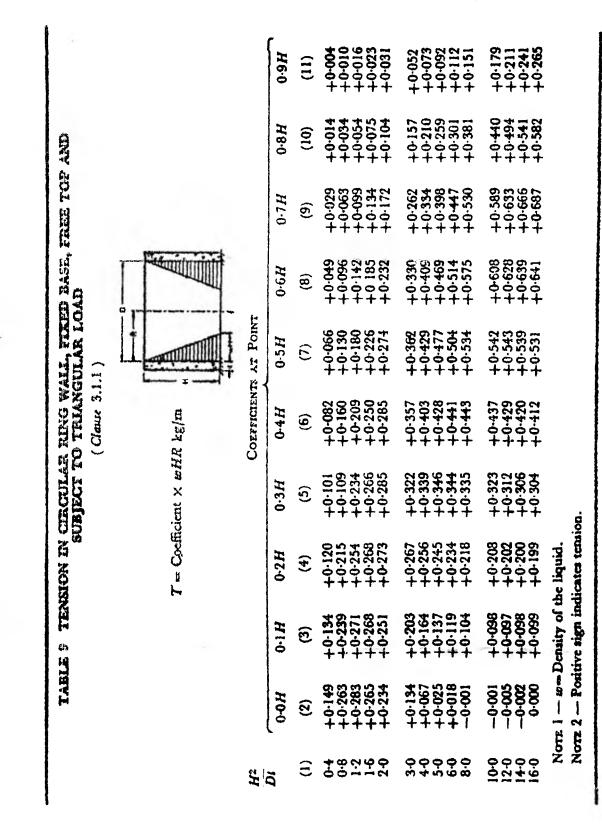
May- 2016

Max. Marks: 100 Duration: 4 hr Class: Btech Name of the course: Design and drawing of RC structures.

Q.P. Code: CE 451 Course Code : CE 451 Sem-VIII Program: Civil Engineering


Master file.


Instructions:


- 1) Attempt five of the following.
- 2) Use of IS 456:2000 is permitted.
- 3) Figures to right indicate full marks.
- 4) Assume suitable data if necessary and state the same clearly.

Question No		Maximum Marks	Course Outcome Number
Q1	A reinforced cantilever RW is supporting backfill of height 5 m above ground level with density of soil =18 kN/m ³ , Angle of repose=30°, S.B.C of soil=150 kN/m ² and coefficient of friction between concrete and soil =0.55. Design the heel and toe of the wall only showing all stability checks. Draw reinforcement details also. Use M20 & Fe 415.	20	1,2,3,4
Q2	The staircase room for a four storeyed framed structure of a residential building is of size 3 m X 5.4m between centre of columns. The columns are of size 230 mm x 230mm. The width of beam and supporting wall is 230 mm. The floor to floor height is 3m.Live load on stairs is 3 kN/m ² and finish is 1 kN/m ² . Use M-20 , Fe-415. Design a suitable dog-legged stairs and draw details of reinforcement.	20	1,2,3,4
	The layout of the columns of the building is shown in figure 1. The outer column are 400x400mm in size and carry load of 700kN each. The inner column are 500x500mm in size and carry a load of 1100kN each. Consider SBC of soil as 100kN/m ² . Use M20 and Fe-415 Design only slab and main beam of the raft foundation. Show reinforcement details also.	20	1,2,3,4
Q4	Design rectangular water tank open at top resting on ground having size of 3 mx7mx3m high.Adopt M20 and Fe-415.Using approximate method design short walls of the tank. Draw reinforcement det ails.	20	1,2,3,4

	Design circular tank using IS code method with fixed base resting		
Q5	on ground for capacity of 400m ³ .Height of tank is restricted to 5m.Use M-20 and Fe-415. Draw reinforcement details.	20	1,2,3,4
Q6	For the floor system shown in figure 2, design slab S2-S3-S2. Take live load =2kN/m ² . Use M25 and Fe-500.Draw reinforcement details	20	1,2,3,4
Q7	For the floor system shown in figure 2,design beam B2-B3-B4 .Take live load =2kN/m ² .Floor to floor height as 3.5m,wall thickness =230mm.Take full wall height on B2-B3-B4 height .Use M25 and Fe-500.Draw reinforcement details	20	1,2,3,4

IS: 3370 (Part IV) -1967

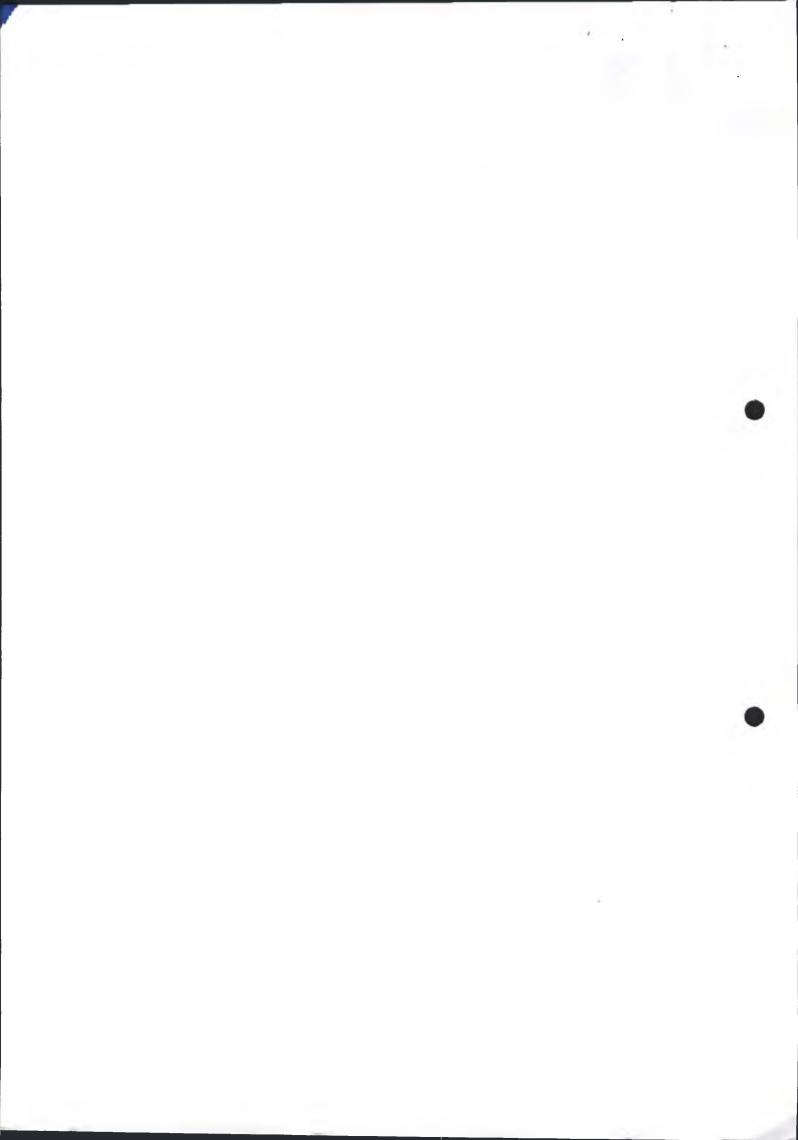
		Mom	Moment == Coefficient × wH* kgm/m	ient X wH	kgm/m					
D F	0-1 <i>H</i>	0-2 <i>H</i>	0-3H	0-4H	COLFFICIENTS AT POINT 0-5H 0-6H	0-6H	0-7H	0-8 <i>H</i>	H6-0	1-0H
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
21-00 0004	++++++++++++++++++++++++++++++++++++++	+0.0014 +0.0037 +0.0042 +0.0041 +0.0041	+0.0021 +0.0063 +0.0077 +0.0075	+0.0007 +0.00007 +0.0103 +0.0099	-0.0042 +0.0070 +0.0112 +0.0121 +0.0121	-0.0150 +0.0023 +0.0090 +0.0111 +0.0115	-0.0302 -0.0068 +0.0058 +0.0075	0-0529 0-0024 0-0108 0-0051 0-0021	0-0816 0-0465 0-0311 0-0232 0-0185	0-1205 0-0795 0-0602 0-0505 0-0436
≈4℃∂ 8 00000	++0.0006 ++0.0002 0.0001	+0.0024 +0.00015 +0.0003	+0.0047 +0.0028 +0.0016 +0.0008 +0.0002	+0-0071 +0-0029 +0-00087 +0-0008	+0.0090 +0.0046 +0.0032 +0.0016	+0-0097 +0-0077 +0-0059 +0-0046 +0-0028	+0-0077 +0-0069 +0-0059 +0-0051	+0.0012 +0.0023 +0.0028 +0.0029 +0.0029	0-0119 0-0080 0-0058 0-0041 0-0022	0-0333 0-0268 0-0222 0-0187 0-0146
10-0 12-0 1 4-0	0-0000 0-00000 00000000000000000000000	-0.0000 0-0000	+0-0001 0-00001 0-00001	+0.0004 +0.0002 -0.00002	+0-0001	+0-0019 +0-00013 +0-0004	+0-0029 +0-0023 +0-0013	+0-0028 +0-0026 +0-0023	+0.0012 -0.0001 +0.0001	-0.0122 -0.0104 -0.0090 -0.0079
Note Note	N	w=Density of the liquid Positive sign indicates ter	w=Density of the liquid. Positive sign indicates tension on the outside.	m on the o	utuide.					

TABLE 16 MOMENTS IN CYLINDRICAL WALL, FIRED BASE, FREE TOP AND SUBJECT TO TRIANGULAR LOAD

(Clause 3.1.1)

1961 - (AI 2884) ALSE : 81

TABLE 11 SHEAR AT BASE OF CYLINDRICAL WALL


(Clauses 3.1.1, 3.1.2 and 3.1.3)

p == Coefficient × {
 wH³ kg (triangular)
 pH kg (rectangular)
 M/H kg (moment at base)

H* Di	TRIANGULAR LOAD FIXED BASE	Rectangular Load Fixed Base	Triangular or Rectangular Load Hinged Base	Moment At Edge
0-4	+0.436	+0.755	+0.245	
0.8	+0.374	+0.552	+0.234	
1-2	+0.339	+0.460	+0-220	-2.00
1-6	+0.317	+0· 40 7	+0.204	-2.28
2-0	+0-299	+0.370	+0.189	-2.57
9-0	+0.262	+0.310	+0.158	- 3.18
4.0	+0.236	+0.271	+0-137	- 3.68
5.0	+0.213	+0.243	+0.121	-4-10
6.0	+0.197	+0.222	+0.110	
8-0	+0-174	+0.193	+0.096	5.18
10-0	+0.158	+0.172	+0.087	5-81
12.0	+0.145	+0.158	+0.079	6-38
14.0	+0.135	+0.147	+0.073	6-88
16-0	+0.127	+0.137	+0.068	7.36

Norz 1 - w = Density of the liquid.

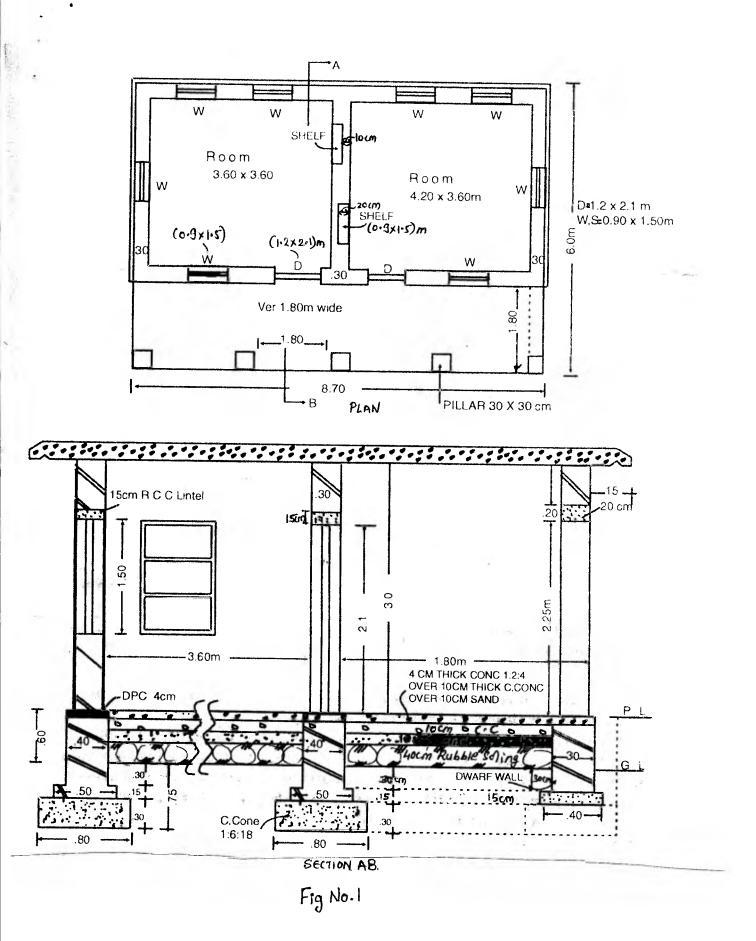
Norz 2 --- Positive sign indicates shear acting inward.

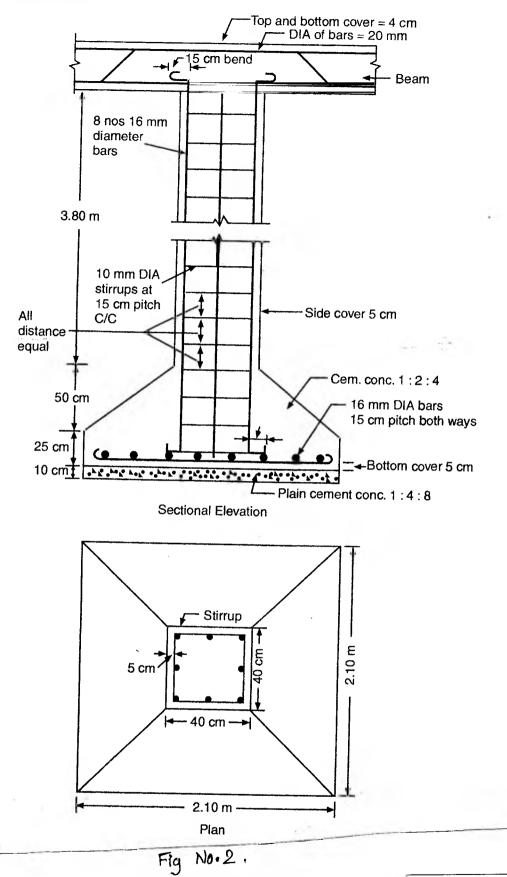
lib seem 2116/2016

Sardar Patel College of Engineering

(A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai – 400058. End Semester Re-Exam June- 2016

Max. Marks: 100 Class: B.Tech Civil Semester: VIII Name of the Course: Quantity Survey, Estimation & Valuation


Duration: 4 hours Program: Civil Engineering Course Code : CE452


Instructions:

- 1. Make suitable assumptions where necessary and state them clearly.
- 2. Figure to right indicate full marks.
- 3. Q1 compulsory, Solve any four from remaining six questions Mqs+erfile.

Que No	stion		Marks	C.O. No	Mod No.
		It is proposed to construct a load bearing structure as shown in Fig no. 1. The specification for construction are as follow. Foundation and plinth: 1 st class brick work in 1:4 mortar over 30cm thick C.C work 1:6:18 D.P.C: 4cm thick 1:2:4 cement concrete with water proofing compound.			
Q1	A	Flooring:4cm thick concrete flooring over 10 cm thick cement concrete over 10 cm thick sand laid over 40cm thick rubble soling. Brick Work in super structure: 1 st class brick work in 1:4 mortar. Finishing:			
¥.		Inside plaster – 12mm thick 1:6 cement sand plastering. Outside Plaster – 16mm thick 1:4 cement sand plastering. Ceiling plastering – 6mm thick 1:4 cement sand plastering. Roofing: 15cm R.C.C slab. R.C.C work: Lintel, Chajja and Roof slab in 1:2:4 cement concrete.	20	1	2
		 Find the Quantity of following item a) Earth work in excavation b) Brick work in super structure c) External plastering. d) Plinth filling. 			
Q2	A	Explain in detail revised estimate and supplementary estimate	5		
	В	State the method of preparing approximate estimates for thefollowing civil engineering projects.i)Highwayii)Water Supply Schemeiii)Bridgesiv)Damsv)School	10	1	1
	c	Define the following terms: i) scrap value, ii) speculative value, iii) capitalized value, iv) monopoly value	5	4 ·	7

Q3	A	Define suitable	tender	and exp	olain ba	alance a	nd unbal	anced te	nder wi	th 10		
	B				lain in c	letail ess	entials of	contract		10	3	6
Q4	A	Explain	the terr	n i) lead and Back	and lift					10	2	4
	В					tem 'b' a	nd 'c' of	Q1.A	<u> </u>	10	2	3
Q5	A	State di method	fferent 1 in detai	nethod o l.	f valua	tion of la	nd and e	xplain co	omparativ	^{re} 10		
	В	i) ii) iii) iv) v) vi) vi) vii) viii)	Gros Year Life Own Rate Mun Annu Mair incor	ss income of const of prope er desire of intere icipal tas ual repain intenance, me.	e from t truction rty 50 y s to hav est on si xes = 24 r charge insurat	he prope - 1963 /ears /e a net re nking fun l% of gro es = 3% c nce and c	rty- Rs. 3 eturn of 8 nd is 5% oss incom of gross in other cha	% from i % from i ne ncome rges = 39	wing data nvestmer % of gros	nt 5	4	7
	C								e property	-		
Q6	A	shown ii	n Fig No	b.2.					footing a	10	1	2
	В	concrete	(1:1.5:	lysis for 3) includ 1 in table	ing rein	vork sho forceme	wn in Fi g nt, center	g No. 2 u ing and s	sing M2 huttering	0 . 10	1	2
Q7	A	Work ou prepare with the Formatic Side slop Earthwo Turfing o	abstract followin on width oe in em rk in em	of cost on ng data. n of road: bankmen bankmen	of earth 12m nt: 2:1 nt: Rs. 3	work and 30/ cum	a length d turfing	of 300m on the si	i road and ide slope	d s 15	1.	1
Chair	nage	0	50	100	150	200	250	300	250	400	470	200
R.L c Grou		106.4	104.9	105.35	106.2	107.40	106.60	300 104.50	350 107.60	400 107.40	450 107.70	500 108.20
R.L Form		105										100.40
Gradi	-		L [Risir	g gradie	nt 1 in 20	0			
	C	Draw ma money to Rs.50/cur	haul, if	free hau	l distan	ce is 70n	n, cost of	borrow i	ill cost s	5	2.	2


Labour	Work Per Day
head mason	20cum
mason	1.25cum
mazdoor	0.7cum
Bisti	5cum
Bar bender	1.2cum
Carpenter	1 cum

Max. Marks: 100

Class: Final Year B. Tech

Bharatiya Vidya Bhavan's Sardar Patel College of Engineering

(A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai – 400058. **RE-EXAMINATION**

June 2016

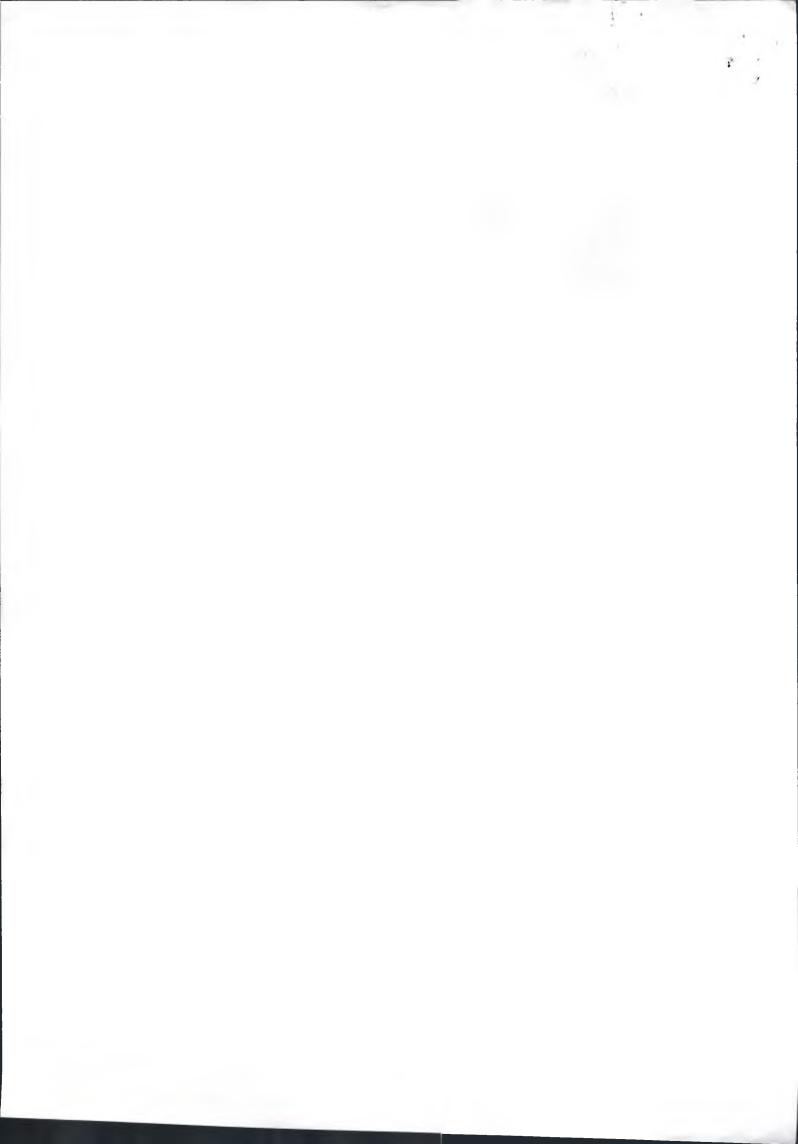
Semester: VIII

Duration: 3 Hrs Program: Civil Engineering

Name of the Course: Construction Management Instructions: Course Code : CE453 Master file.

- 1) Attempt any five questions.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figure to the right side indicate full marks.
- 4) Use of Scientific calculator is allowed.
- 5) Assume suitable data if necessary and state it clearly.

Q.No			Marks	Course Outcome Number	Module No.
1	a	Discuss the role of Project Management Consultant.	6	CO1	1
	b	Explain pretender and Preconstruction Planning	7	CO1	2
	c	Explain the importance of Network analysis in Project management.	7	CO1	3
2	a	Explain the importance of Work Breakdown Structure in construction and Draw WBS for Pumping Station	8	CO1	2
	b	Elaborate the purpose of Resource scheduling and Describe in detail vertical production method.	6	CO2	4
	c	Describe the factors to be considered in equipment selection and planning?	6	CO1	5
3	a	Explain the salient features of Minimum Wages	6	CO3	7
	1	Act. Explain in detail Resource leveling and scheduling.	8	CO1	5
	b	Discuss the classification of Cost	6	C01	5


Q.No			Marks	Course Outcome Number	Module No
4	a	Discuss organization structure for typical building construction site.	6	CO1	5
	b	Determine the float of each activity and identify the critical path if the scheduled completion time for the project is 20 weeks. Also identify the sub critical path and slacks for events	10	CO1	3
		$10 \frac{1-2-3}{20} = 20 \frac{3-4-6}{40} = 40 \frac{7-3-9}{50}$	60	- 4 - 7	70)

Q.No			Marks	Course Outcome Number	Module No
5	a	Explain safety precautions to be taken during High Rise Building	8	CO2	6
	b	Calculate the activity times and floats of the activities of the network given below.	12	CO1	3
	() >	9	7

Q.No 6	a	Disgues the lite		Course Outcome Number	Module No
	a	Discuss the quality control measures to be taken during construction of High rise Building	8	CO2	3
	b Discuss the Provisions of Workman's Compensation Act.	6	CO3	7	
	с	Elaborate causes of time and cost overruns in Road construction projects.	6	CO1	6

'n

Q.No				Course Outcome	Module No
	а	Discuss the quality control measures to be taken during construction of High in Paulice to be taken		Number	
		during construction of High rise Building	6	CO2	6
	b	Explain the importance of Material management.			Ű
		respect Road Construction Site	10	CO1	3
	с	Differentiate Resources leveling and Desce			
		Smoothening Smoothening	4	CO1	4

